The Drosophila WIF1 homolog Shifted maintains glypican-independent Hedgehog signaling and interacts with the Hedgehog co-receptors Ihog and Boi.
نویسندگان
چکیده
Hedgehog (Hh) family proteins are secreted signaling ligands whose short- and long-range activities transform cellular fates in multiple contexts in organisms ranging from metazoans to humans. In the developing Drosophila wing, extracellular Hh binds to cell-bound glypican heparan sulfate proteoglycans (HSPGs) and the secreted protein Shifted (Shf), a member of Wnt inhibitory factor 1 (WIF1) family. The glypicans and Shf are required for long-range Hh movement and signaling; it has been proposed that Shf promotes long-range Hh signaling by reinforcing binding between Hh and the glypicans, and that much or all of glypican function in Hh signaling requires Shf. However, we will show here that Shf maintains short-range Hh signaling in the wing via a mechanism that does not require the presence of or binding to the Drosophila glypicans Dally and Dally-like protein. Conversely, we demonstrate interactions between Hh and the glypicans that are maintained, and even strengthened, in the absence of Shf. We present evidence that Shf binds to the CDO/BOC family Hh co-receptors Interference hedgehog (Ihog) and Brother of Ihog, suggesting that Shf regulates short-range Hh signaling through interactions with the receptor complex. In support of a functional interaction between Ihog and members of the Shf/WIF1 family, we show that Ihog can increase the Wnt-inhibitory activity of vertebrate WIF1; this result raises the possibility of interactions between WIF1 and vertebrate CDO/BOC family members.
منابع مشابه
The cell-surface proteins Dally-like and Ihog differentially regulate Hedgehog signaling strength and range during development.
Hedgehog (Hh) acts as a morphogen in various developmental contexts to specify distinct cell fates in a concentration-dependent manner. Hh signaling is regulated by two conserved cell-surface proteins: Ig/fibronectin superfamily member Interference hedgehog (Ihog) and Dally-like (Dlp), a glypican that comprises a core protein and heparan sulfate glycosaminoglycan (GAG) chains. Here, we show in ...
متن کاملGenetic and biochemical definition of the Hedgehog receptor.
Although the transporter-like protein Patched (Ptc) is genetically implicated in reception of the extracellular Hedgehog (Hh) protein signal, a clear definition of the Hh receptor is complicated by the existence of additional Hh-binding proteins and, in Drosophila, by the lack of physical evidence for direct binding of Hh to Ptc. Here we show that activity of Ihog (Interference hedgehog), or of...
متن کاملThe Ihog Cell-Surface Proteins Bind Hedgehog and Mediate Pathway Activation
The ihog gene (interference hedgehog), identified by RNA interference in Drosophila cultured cells, encodes a type 1 membrane protein shown here to bind and to mediate response to the active Hedgehog (Hh) protein signal. ihog mutations produce defects characteristic of Hh signaling loss in embryos and imaginal discs, and epistasis analysis places ihog action at or upstream of the negatively act...
متن کاملThe Role of Glypicans in Wnt Inhibitory Factor-1 Activity and the Structural Basis of Wif1's Effects on Wnt and Hedgehog Signaling
Proper assignment of cellular fates relies on correct interpretation of Wnt and Hedgehog (Hh) signals. Members of the Wnt Inhibitory Factor-1 (WIF1) family are secreted modulators of these extracellular signaling pathways. Vertebrate WIF1 binds Wnts and inhibits their signaling, but its Drosophila melanogaster ortholog Shifted (Shf) binds Hh and extends the range of Hh activity in the developin...
متن کاملThe WIF domain of the human and Drosophila Wif-1 secreted factors confers specificity for Wnt or Hedgehog.
The Hedgehog (Hh) and Wnt signaling pathways are crucial for development as well as for adult stem cell maintenance in all organisms from Drosophila to humans. Aberrant activation of these pathways has been implicated in many types of human cancer. During evolution, organisms have developed numerous ways to fine-tune Wnt and Hh signaling. One way is through extracellular modulators that directl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 140 1 شماره
صفحات -
تاریخ انتشار 2013